ارائه مدلی جهت پیشبینی قیمت سهام با استفاده از روشهای فرا ابتکاری و شبکههای عصبی
Authors
Abstract:
به دلیل پیچیدگی بازار بورس و حجم بالای اطلاعات مورد پردازش، اغلب استفاده از یک سیستم ساده برای پیشبینی نتایج خوبی به همراه ندارد. به همین دلیل محققان با ارائهی مدلهای ترکیبی سعی در ارائهی سیستمی با پیچیدگی کمتر و کارایی و دقت بیشتر کردهاند. امروزه از الگوهای مختلفی مانند: تکنیکهای آماری (تحلیل تشخیصی، لوجیت و آنالیز فاکتوری) و تکنیکهای هوش مصنوعی (شبکههای عصبی، درخت تصمیمگیری، استدلال مبتنی بر موضوع، الگوریتم ژنتیک، مجموعههای سخت، ماشین بردار تکیه گاه و منطق فازی) و یا ترکیبی از این دو تکنیک برای پیشبینی قیمت سهام استفاده میشود. در اکثر مدلهای پیشبینی کننده، سیستم فقط با استفاده از اطلاعات یک شاخص به پیشبینی میپردازد، اما در مدل پیشنهادی در این پژوهش یک سیستم دو سطحی از شبکههای عصبی پرسپترون چندلایه پیشنهاد شده و از چندین شاخص برای پیشبینی استفاده میشود. در این پژوهش دادههای شاخص قیمت بورس اوراق بهادار تهران از 1391 تا 1395 برای این منظور در نظر گرفته شده است. همچنین برای آموزش بهتر شبکهی عصبی و در نتیجه بهبود نتایج بدست آمده، از الگوریتم بهینهسازی ملخ برای انتخاب بهترین نمونهها استفاده شده است. نتایج بدست آمده نشان میدهد که مدل پیشنهادی توانسته با خطای پیشبینی پایینتری نسبت به دیگر مدلها عمل کند
similar resources
کاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی
پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبر...
full textمدلسازی پیشبینی قیمت سهام با استفاده از شبکه عصبی و مقایسه آن با روشهای پیشبینی ریاضی
استفاده از روشهایی برای پیش بینی وضعیت آینده، همواره دغدغه اصلی اندیشمندان علوم مختلف بوده است. در این راه بطور طبیعی، روشهایی، قابلیت ماندگاری و کاربردی مناسب دارند که دارای کمترین خطای ممکن در پیشبینی باشند. بر این مبنا در سالهای بسیار، روشهایی ریاضی؛ اعم از میانگین ساده، میانگین موزون، میانگین دوبل، رگرسیون و مانند اینها، تنها الگوهایی بود که قاطعانه مورد تأیید و استفاده قرار میگرفت؛ اما ...
full textپیشبینی شاخص سهام با استفاده از ترکیب شبکه عصبی مصنوعی و مدلهای فرا ابتکاری جستجوی هارمونی و الگوریتم ژنتیک
هدف پژوهش حاضر پیشبینی شاخص قیمت بورس اوراق بهادار تهران با استفاده از مدل شبکه عصبی هیبریدی مبتنی بر الگوریتم ژنتیک و جستجوی هارمونی است. مربوطترین نماگرهای تکنیکی به عنوان متغیرهای ورودی و تعداد بهینه نرون در لایه پنهان شبکه عصبی مصنوعی با استفاده از الگوریتمهای فراابتکاری ژنتیک و جستجوی هارمونی حاصل میگردد. مقادیر روزانه شاخص قیمت بورس اوراق بهادار تهران از تاریخ 1/10/91 الی 30/9/94 جهت ...
full textکاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی
پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبر...
full textارزیابی روشهای پیش بینی قمیت سهام و ارائه مدلی غیرخطی بر اساس شبکه های عصبی
در این مقاله با استفاده از اطلاعات سری زمانی قیمت و بازده سهام چند شرکت در بازار بورس تهران، به پیش بینی قیمت سهام و نیز ارائه مدل بهینه پرداخته می شود. روشهای پیش بینی مورد استفاده در تحقیق، به سه دسته تقسیم شده اند: روشهای پیش بینی براساس مدلهای خطی (کوتاه مدت و بلندمدت)، روشهای پیش بینی براساس مدلهای غیرخطی (شبکه های عصبی غیرخطی) و مدل شبکه عصبی با ساختار پیشنهادی، در هر مورد نتایج به دست آم...
full textارائه مدلی جهت پیش بینی بیماری دیابت با استفاده از شبکه عصبی
Introduction: Meta-heuristic and combined algorithms have a great capability in modelling medical decision making. This study used neural networks in order to predict Type 2 Diabetes (T2D) among high risk individuals. Methods: This study was an applied research. Data from 545 individuals (diabetic and non-diabetic), in Diabetes Clinic of Hamedan University of Medical Sciences, we...
full textMy Resources
Journal title
volume 10 issue 40
pages 57- 83
publication date 2019-09-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023